Asymptotic analysis for blocking probabilities of optical buffer with general packet-length distributions

نویسنده

  • Yasuji Murakami
چکیده

Asynchronous optical packet switching seems to be suitable as a transport technology for the next-generation Internet due to the variable lengths of IP packets. Optical buffers in the output port are an integral part for solving contention by exploiting the time domain. Fiber delay lines (FDLs) are a well-known technique for achieving optical buffers. This work aims to give a highly accurate approximation of the blocking probabilities of the optical buffers for a generally distributed packet length even when the offered load is extremely low. Such a tool is needed for investigating and designing realistic optical packet switches, which will be used for low-offered-load and low-packet-loss optical IP networks. We use the asymptotic expansion for the decay rate, resulting in a highly accurate approximation. By using the fourth order approximation of the decay rate, an accuracy within 10 % was obtained for both the exponential and uniform distribution cases of an offered load greater than 0.3. The approximations established in this work can be applied to investigate multiclass optical buffers for priority queueing.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

M1, M2, ..., Mk/G1, G2,..., Gk/l/N Queue with Buffer Division and Push-Out Schemes for ATM Networks (RESEARCH NOTE)

In this paper, loss probabilities and steady state probabilities of data packets for an asynchronous transfer mode (ATM) network are investigated under the buffer division and push-out schemes. Data packets are classified in classes k which arrive in Poisson fashion to the service facility and are served with general service rate under buffer division scheme, finite buffer space N is divided in...

متن کامل

Design of Arrayed Waveguide Grating based Optical Switch for High Speed Optical Networks

This paper demonstrates the design of an Arrayed Waveguide Gratings (AWG) based optical switch. In the design both physical and network layer analysis is performed. The physical layer power and noise analysis is done to obtain Bit Error Rate (BER). This has been found that at the higher bit rates, BER is not affected with number of buffer modules. Network layer analysis is done to obtain perfor...

متن کامل

Dimensioning shared-per-node recirculating fiber delay line buffers in an optical packet switch

Optical buffering based on fiber delay lines (FDLs) has been proposed as a means for contention resolution in an optical packet switch. In this article, we propose a queuing model for feedback-type shared-per-node recirculating FDL optical buffers in asynchronous optical switching nodes. In this model, optical packets are allowed to recirculate over FDLs as long as the total number of recircula...

متن کامل

Exact and Approximate Analytical Modeling of an FLBM-Based All-Optical Packet Switch

This paper develops both exact and approximate models for the analysis of an all-optical packet switch based on a fiber-loop buffer memory (FLBM). The switch structure and operation is based on the fully shared buffer architecture of the Research and Development in Advanced Communications in Europe—ATM Optical Switching (RACE-ATMOS) project [1], which uses individual wavelengths to store fixed-...

متن کامل

Ultrafast Photonic Label Switch for Asynchronous Packets of Variable Length

This paper describes new optical switching architectures supporting asynchronous variable-length packets. Output line contention is resolved by optical delay line buffers. By introducing a WDM technology, parallel buffer can be equipped with multiple wavelengths on the optical delay line buffer. Using an ul-trafast photonic label processing technique, an implementation of our architecture would...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015